

The NOvA Experiment

WIN'05
Delphi
8 June 2005

Gary Feldman

The NOvA Experiment (NuMl Off-Axis v_e Appearance Experiment)

- NOvA is an approved Fermilab experiment optimized for measuring v_e appearance with the goal of improving MINOS's $v_{\mu} \rightarrow v_e$ measurement by approximately an order of magnitude.
- The NOvA far detector will be
 - a 30 kT "totally active" liquid scintillator detector
 - located 15 mrad (12 km) off the NuMI beamline axis near
 Ash River, MN, 810 km from Fermilab
- The uniqueness of NOvA is the long baseline, which is necessary for determining the mass ordering of the neutrino states.

Off-Axis Rationale

- Both Phase 2 experiments, NOvA and T2K are sited off the neutrino beam axis. This yields a narrow band beam:
 - More flux and less background (v_e 's from K decay and higherenergy NC events)

NOvA Far Detector

1.87 GeV $v_e N \rightarrow ep\pi^+\pi^0$ x-z View

2.11 GeV $\nu_{\mu}N \rightarrow \nu_{\mu}p\pi^{0}$ x-z View

1.86 GeV $v_eN \rightarrow ep\pi^+$ x-z View

Electron ID and Resolution

Average pulse height per plane

Electron resolution

Far Detector Assembly

One 8-plane sub-block assembled per day

Detector has 248 subblocks

Far Detector Building Proposal Design

Far Detector Building Design with Overburden

Near Detector

Near Detector: Modular and Mobile

M Test

MINOS Surface Building

NuMI Access Tunnel

Near Detector in MINOS Surface Building

6.5 x 10²⁰ pot in 75 mrad off-axis beam

2,200 v_e CC events

Near Detector in the Access Tunnel

Change in NOvA Prospects

- The cancellation of the BTeV experiment caused a major change in the prospects for NOvA
 - Funds are available for medium size new initiatives
 - More protons are available
- DoE has signaled that it will prepare to put funds for NOvA in the FY07 budget
 - Pending NuSAG/P5 and OMB approval
- Strong Fermilab support
 - Only approved experiment in the post 2010 era

Post-Collider Proton Plan

- Proton Plan with Collider
 - 9/11 Slip-stacked Booster batches at 5.5×10¹² p/batch
 - Repetition rate = 0.8 s (Booster) + 1.4 s (Ramp) = 2.2 s
 - 10% for Collider shot setup + 5% for antiproton transfer
 - \Rightarrow 3.4 ×10²⁰ protons/yr
- Post-Collider Proton Plan
 - 11 batches for neutrinos ⇒ 11/9 = 1.22 factor
 - Hide Booster filling time in Recycler ⇒ 0.8 s → 0.067 s
 ⇒ 2.2 s → 1.467 s = 1.50 factor
 - Save 10% shot setup and 5% antiproton transfer = 1.17 factor
 - \Rightarrow (3.4 ×10²⁰ protons/yr)(1.22)(1.50)(1.17) = (7.3 ×10²⁰ protons/yr)
- Negotiated rate is 90% of this: (6.5×10²⁰ protons/yr)
- Proton Driver rate taken as 25×10²⁰ protons/yr

What Do We Know?

Parameters Consistent with a 2% $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

 $\sin^2(2\theta_{13})$ vs. $P(\bar{v}_e)$ for $P(v_e) = 0.02$

Parameters Consistent with Other Oscillation Probabilities

5 year

ν only

21

run

3 σ Sensitivity to θ_{13} ≠ 0 Comparison with Proton Driver

2.5 yr each

v and \overline{v} run

2.5 yr each v and \overline{v} run

2.5 yr each v and \overline{v} run

Importance of the Mass Ordering

- Window on very high energy scales: grand unified theories favor the normal mass ordering, but other approaches favor the inverted ordering.
- If we establish the inverted ordering, then the next generation of neutrinoless double beta decay experiment can decide whether the neutrino is its own antiparticle. However, if the normal ordering is established, a negative result from these experiments will be inconclusive.
- To measure CP violation, we need to resolve the mass ordering, since it contributes an apparent CP violation that we must correct for.

Role of NOvA in Resolving the Mass Ordering

- The mass ordering can be resolved only by matter effects in the earth over long baselines.
- NOvA is the only proposed experiment with a sufficiently long baseline to resolve the mass ordering.
- The siting of NOvA is optimized for this measurement.
- NOvA is the first step in a step-by-step program that can resolve the mass ordering in the region accessible to conventional neutrino beams.

95% CL Resolution of the Mass Ordering

95% CL Determination of the Mass Ordering

Gary Feldman

3 σ Determination of CP Violation

3 σ Determination of CP Violation

WIN'05

8 June 2005

Measurement of Δm_{32}^2 and $\sin^2(2\theta_{23})$

5-year v run

5-year v run with Proton Driver

8 June 2005

Study MiniBooNE Signal

Sensitivity to a Galactic Supernova

Gary Feldman 33

Schedule (10 of 29 Milestones)

Project start	Oct 2006
R&D prototype Near Detector complete	Mar 2007
Start Far Detector Building construction	Jul 2007
Start receiving packaged APDs	Oct 2007
Start extrusion module factories	Oct 2007
Start construction of Near Detector	Dec 2007
Start operation of Near Detector	Jul 2008
Start Far Detector assembly	May 2009
First kiloton operational	Oct 2009
Full 30 kilotons operational	Jul 2011

Sensitivity vs. Time

Assumed T2K Beam Power vs. Time

From S. Nagamiya, Feb 2005

Sensitivity vs. Time Comparison to T2K

3 σ Sensitivity to $\sin^2(2\theta_{13})$

Conclusion

- NOvA provides a flexible approach to studying all of the parameters of neutrino oscillations
 - A long baseline approach is crucial in the context of the world program.
 - NOvA is the first stage of a flexible program where each stage can be planned according to what has been learned in previous stages.
 - The NOvA physics reach is greater than other experiments being contemplated for the next few years.
 - The full range of the NOvA/NuMI program is comparable to that of other conventional approaches.
 - NOvA is the size project that can be started now.